Nature
1.
Lam, C.K., et al.: Nature, 465, 478(2010).
Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization.
https://www.ncbi.nlm.nih.gov/pubmed/20505729
2.
Stefater, J. A. 3rd. et al.: Nature, 474, 511(2011).
Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells
https://www.ncbi.nlm.nih.gov/pubmed/21623369
3.
Deng, H. X., et al.: Nature, 477, 211(2011).
Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia.
https://www.ncbi.nlm.nih.gov/pubmed/21857683
4.
Lee, Y., et al.: Nature, 487, 433(2012).
Oligodendroglia metabolically support axons and contribute to neurodegeneration.
https://www.ncbi.nlm.nih.gov/pubmed/22801498
5.
Heneka, M. T., et al.: Nature, 493, 674(2013).
NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice.
https://www.ncbi.nlm.nih.gov/pubmed/23254930
6.
Shao, W., et al.: Nature, 494, 90(2013).
Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin
https://www.ncbi.nlm.nih.gov/pubmed/23242137
7.
Zhang, G., et al.: Nature, 497, 211(2013).
Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH
https://www.ncbi.nlm.nih.gov/pubmed/23636330
8.
Chung, W. S., et al.: Nature, 504, 394(2013).
Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways.
https://www.ncbi.nlm.nih.gov/pubmed/24270812
9.
Roth, T. L., et al.: Nature, 505, 223(2014).
Transcranial amelioration of inflammation and cell death after brain injury
https://www.ncbi.nlm.nih.gov/pubmed/24317693
10.
Najm, F. J., et al.: Nature, 522, 216(2015).
Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.
https://www.ncbi.nlm.nih.gov/pubmed/25896324
11.
Fourgeaud, L., et al.: Nature, 532, 240(2016).
TAM receptors regulate multiple features of microglial physiology.
https://www.ncbi.nlm.nih.gov/pubmed/27049947
12.
Vasek, M. J., et al.: Nature, 534, 538(2016).
A complement-microglial axis drives synapse loss during virus-induced memory impairment.
https://www.ncbi.nlm.nih.gov/pubmed/27337340
13.
Iaccarino, H. F., et al.: Nature, 540, 230(2016).
Gamma frequency entrainment attenuates amyloid load and modifies microglia.
https://www.ncbi.nlm.nih.gov/pubmed/27929004
14.
Bialas, A. R. et al.: Nature, 546, 539(2017).
Microglia-dependent synapse loss in type I interferon-mediated lupus
https://www.ncbi.nlm.nih.gov/pubmed/28614301
15.
Mass, E., et al.: Nature, 549, 389(2017).
A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease.
https://www.ncbi.nlm.nih.gov/pubmed/28854169
16.
Jun, J. J., et al.: Nature, 551, 232(2017).
Fully integrated silicon probes for high-density recording of neural activity.
https://www.ncbi.nlm.nih.gov/pubmed/29120427
17.
Bussian, T. J., et al.: Nature, 562, 578(2018).
Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.
https://www.ncbi.nlm.nih.gov/pubmed/30232451
Cell
1.
Lujambio, A., et al.: Cell, 153, 2, 449(2013).
Non-Cell-Autonomous Tumor Suppression by p53.
https://www.ncbi.nlm.nih.gov/pubmed/23562644
2.
Parkhurst, C. N., et al.: Cell, 155, 7, 1596(2013).
Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.
https://www.ncbi.nlm.nih.gov/pubmed/24360280
3.
Wang, Y., et al.: Cell, 160, 6, 1061(2015).
TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model.
https://www.ncbi.nlm.nih.gov/pubmed/25728668
4.
Keren-Shaul, H., et al.: Cell, 169, 7, 1276(2017).
A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.
https://www.ncbi.nlm.nih.gov/pubmed/28602351
5.
Ulland, T. K., et al.: Cell, 170, 4, 649(2017).
TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease.
https://www.ncbi.nlm.nih.gov/pubmed/28802038
6.
Qin, Y., et al.: Cell, 174, 1, 156(2018).
A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System.
https://www.ncbi.nlm.nih.gov/pubmed/29909984
7.
Yan, S., et al.: Cell, 173, 4, 989(2018).
A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease
https://www.ncbi.nlm.nih.gov/pubmed/29606351
Nature Medicine
1.
Heppner, F. L., et al.: Nat. Med., 2, 146(2005).
Experimental autoimmune encephalomyelitis repressed by microglial paralysis.
https://www.ncbi.nlm.nih.gov/pubmed/15665833
2.
Nikić, I., et al.: Nat. Med., 4, 495(2011).
A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.
https://www.ncbi.nlm.nih.gov/pubmed/21441916
3.
Vom, B. J., et al.: Nat. Med., 12, 1812(2012).
Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive decline
https://www.ncbi.nlm.nih.gov/pubmed/23178247
4.
Minami, S. S., et al.: Nat. Med., 10, 1157(2014).
Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models.
https://www.ncbi.nlm.nih.gov/pubmed/25261995
5.
Yun, S. P., et al.: Nat. Med., 7, 931(2018).
Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease.
https://www.ncbi.nlm.nih.gov/pubmed/29892066
6.
Mount, C. W., et al.: Nat Med. 5, 572(2018).
Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas.
https://www.ncbi.nlm.nih.gov/pubmed/29662203
Nature Neuroscience
1.
Zhang, K., et al.: Nat. Neurosci., 10, 1064(2003).
HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration.
https://www.ncbi.nlm.nih.gov/pubmed/14502291
2.
Ajami, B., et al.: Nat. Neurosci., 12, 1538(2007).
Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
https://www.ncbi.nlm.nih.gov/pubmed/18026097
3.
Mildner, A., et al.: Nat. Neurosci., 12, 1544(2007).
Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. https://www.ncbi.nlm.nih.gov/pubmed/18026096
4.
Bero, A. W., et al.: Nat. Neurosci., 6, 750(2011).
Neuronal activity regulates the regional vulnerability to amyloid-β deposition.
https://www.ncbi.nlm.nih.gov/pubmed/21532579
5.
Fancy, S. P., et al.: Nat. Neurosci., 14, 1009(2011).
Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.
https://www.ncbi.nlm.nih.gov/pubmed/21706018
6.
Ajami, B., et al.: Nat. Neurosci., 14, 1142(2011).
Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.
https://www.ncbi.nlm.nih.gov/pubmed/21804537
7.
Mosher, K. I. et al.: Nat. Neurosci., 11, 1485(2012).
Neural progenitor cells regulate microglia functions and activity.
https://www.ncbi.nlm.nih.gov/pubmed/23086334
8.
Lehmann, S. M., et al.: Nat. Neurosci., 6, 827(2012).
An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration.
https://www.ncbi.nlm.nih.gov/pubmed/22610069
9.
Kierdorf, K., et al.: Nat. Neurosci., 3, 273(2013).
Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
https://www.ncbi.nlm.nih.gov/pubmed/23334579
10.
Bialas, A. R. et al.: Nat. Neurosci., 12, 1773(2013).
TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement
https://www.ncbi.nlm.nih.gov/pubmed/24162655
11.
Butovsky, O., et al.: Nat. Neurosci., 1, 131(2014).
Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia.
https://www.ncbi.nlm.nih.gov/pubmed/24316888
12.
Saito, T., et al.: Nat. Neurosci., 5, 661(2014).
Single App knock-in mouse models of Alzheimer's disease.
https://www.ncbi.nlm.nih.gov/pubmed/24728269
13.
Erny, D., et al.: Nat. Neurosci., 7, 965(2015).
Host microbiota constantly control maturation and function of microglia in the CNS.
https://www.ncbi.nlm.nih.gov/pubmed/26030851
14.
Sorge, R. E. et al.: Nat. Neurosci., 8, 1081(2015).
Different immune cells mediate mechanical pain hypersensitivity in male and female mice.
https://www.ncbi.nlm.nih.gov/pubmed/26120961
15.
Hama, H., et al.: Nat. Neurosci., 10, 1518(2015).
ScaleS: an optical clearing palette for biological imaging.
https://www.ncbi.nlm.nih.gov/pubmed/26368944
16.
Asai, H., et al.: Nat. Neurosci., 11, 1584(2015).
Depletion of microglia and inhibition of exosome synthesis halt tau propagation.
https://www.ncbi.nlm.nih.gov/pubmed/26436904
17.
Guan, Z., et al.: Nat. Neurosci., 1, 94(2016).
Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain.
https://www.ncbi.nlm.nih.gov/pubmed/26642091
18.
Grabert, K., et al.: Nat. Neurosci., 3, 504(2016).
Microglial brain region-dependent diversity and selective regional sensitivities to aging
https://www.ncbi.nlm.nih.gov/pubmed/26780511
19.
Gonçalves, J. T., et al.: Nat. Neurosci., 6, 788(2016).
In vivo imaging of dendritic pruning in dentate granule cells
https://www.ncbi.nlm.nih.gov/pubmed/27135217
20.
Liu, Q., et al.: Nat. Neurosci., 2, 243(2016).
Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation.
https://www.ncbi.nlm.nih.gov/pubmed/26752157
21.
Safaiyan, S., et al.: Nat. Neurosci., 8, 995(2016).
Age-related myelin degradation burdens the clearance function of microglia during aging.
https://www.ncbi.nlm.nih.gov/pubmed/27294511
22.
Pandya, H., et al.: Nat. Neurosci., 5, 753(2017).
Differentiation of human and murine induced pluripotent stem cells to microglia-like cells
https://www.ncbi.nlm.nih.gov/pubmed/28253233
23.
Füger, P., et al.: Nat. Neurosci., 10, 1371(2017).
Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging
https://www.ncbi.nlm.nih.gov/pubmed/28846081
Nature Immunology
1.
Wang, Y., et al.: Nat. Immunol., 13, 753(2012).
IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia.
https://www.ncbi.nlm.nih.gov/pubmed/22729249
2.
Goldmann, T., et al.: Nat. Immunol., 17, 797(2016).
Origin, fate and dynamics of macrophages at central nervous system interfaces
https://www.ncbi.nlm.nih.gov/pubmed/27135602
3.
Haimon, Z., et al.: Nat. Immunol., 19, 636(2018).
Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.
https://www.ncbi.nlm.nih.gov/pubmed/29777220
Nature Biotechnology
1.
Park, S. I., et al.: Nat. Biotechnol., 33, 1280(2015).
Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
https://www.ncbi.nlm.nih.gov/pubmed/26551059
2.
Staahl, B. T., et al.: Nat. Biotechnol., 35, 431(2017).
Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes
https://www.ncbi.nlm.nih.gov/pubmed/28191903
Nature Methods
1.
Clark, J. J., et al.: Nat. Methods., 7, 126(2010).
Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals
https://www.ncbi.nlm.nih.gov/pubmed/20037591
2.
Prevedel, R., et al.: Nat. Methods., 13, 1021(2016).
Fast volumetric calcium imaging across multiple cortical layers using sculpted light
https://www.ncbi.nlm.nih.gov/pubmed/27798612
Neuron
1.
Simard, A. R., et al.: Neuron, 49, 4, 489(2006).
Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease.
https://www.ncbi.nlm.nih.gov/pubmed/16476660
2.
Bhaskar, K., et al.: Neuron, 68, 1, 19(2010).
Regulation of tau pathology by the microglial fractalkine receptor.
https://www.ncbi.nlm.nih.gov/pubmed/20920788
3.
Bergmann, O., et al.: Neuron, 74, 4, 634(2012).
The Age of Olfactory Bulb Neurons in Humans
https://www.ncbi.nlm.nih.gov/pubmed/22632721
4.
Schafer, D. P., et al.: Neuron, 74, 4, 691(2012).
Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.
https://www.ncbi.nlm.nih.gov/pubmed/22632727
5.
Paolicelli, R. C., et al.: Neuron, 95, 2, 297(2017).
TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss.
https://www.ncbi.nlm.nih.gov/pubmed/28669544
6.
Tufail, Y., et al.: Neuron, 93, 3, 574(2017).
Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.
https://www.ncbi.nlm.nih.gov/pubmed/28111081
7.
Abud, E. M., et al.: Neuron, 94, 2, 278(2017).
iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.
https://www.ncbi.nlm.nih.gov/pubmed/28426964
8.
Bohlen, C. J., et al.: Neuron, 94, 4, 759(2017).
Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.
https://www.ncbi.nlm.nih.gov/pubmed/28521131
9.
De, Biase, L. M., et al.: Neuron, 95, 2, 341(2017).
Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.
https://www.ncbi.nlm.nih.gov/pubmed/28689984
10.
Hwang, H. W., et al.: Neuron, 95, 6, 1334(2017).
cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation.
https://www.ncbi.nlm.nih.gov/pubmed/28910620
11.
Lehrman, E. K., et al.: Neuron, 100, 1, 120(2018).
CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development.
https://www.ncbi.nlm.nih.gov/pubmed/30308165
12.
López-Erauskin, J., et al.: Neuron, 100, 4, 816(2018).
ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS